The Implementation of the BSP Parallel Computing Model
on the InteGrade Grid Middleware -

Andrei Goldchleger, Alfredo Goldman, Ulisses Hayashida, Fabio Kon

Department of Computer Science
University of S&o Paulo, Brazil

{andgold,gold,ulisses,kony@ime.usp.br
http://gsd.ime.usp.br/integrade

ABSTRACT

InteGrade is an object-oriented grid middleware infrastruc-
ture whose goal is to leverage existing computational re-
sources in organizations. Rather than relying on dedicated
hardware such as reserved clusters, InteGrade focuses on
using desktops in users’ offices, machines in computer labo-
ratories, shared workstations, as well as dedicated clusters.
In this paper, we describe the support for the execution
of highly coupled parallel applications on top of InteGrade.
The paper describes the implementation of the middleware
to support BSP parallel applications (with global synchro-
nization points), and presents experimental results.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed

Systems - Distributed applications; D.1.3 [D.1 Program-
ming Techniques|: Concurrent Programming - Parallel
Programming

General Terms

Parallel Computing Library, Performance

Keywords
BSP, Parallel Computing, Grid Computing

1. INTRODUCTION

InteGrade [9] is a Grid Computing system aimed at com-
modity workstations such as household PCs, corporate em-
ployee workstations, and PCs in shared laboratories. It uses
the idle computing power of these machines to perform use-
ful computation. Our goal is to allow organizations to use

*This work is supported by a grant from CNPq, Brazil, pro-
cess #55.0094,/2005-9.

Permission to make digital or hard copies of all or part of this work for

their existing computing infrastructure to perform useful
computation, without requiring the purchase of additional
hardware. Moreover, users who share the idle portion of
their resources should have their quality of service preserved
by the InteGrade middleware.

In spite of the great computing power available today in
most organizations in the form of desktop PCs, there are still
difficulties in using the idle cycles of these machines for use-
ful computation. To solve this, we implemented support for
distributing and executing two different kinds of parallel ap-
plications. First, we extended the interface of InteGrade to
support parametric applications in which there is no commu-
nication among application nodes. This kind of application,
included in the bag-of-tasks class, is currently supported by
other grid middleware such as OurGrid (www.ourgrid.org)
and BOINC [2], on non-dedicated machines. Second, we im-
plemented a modern parallel computing model (Bulk Syn-
chronous Parallel (BSP) [24, 19]) to support applications
whose nodes do communicate with each other, i.e., highly-
coupled parallel applications. The BSP reference implemen-
tation is University of Oxford’s BSPlib [22]. The BSPlib
core library is simple and is composed of only 20 functions.
When compared to PVM [21] and MPI [8], two popular par-
allel computing libraries, BSP offers a much more elegant
computing model and simpler programming library.

Within BSP, we have global synchronization points among
the processes of a parallel application. Using this synchro-
nization points the BSP applications can be better adapted
to an environment subject to frequent changes such as the
Grid. The BSP synchronization points greatly facilitates the
implementation of checkpointing to permit recovery in the
presence of failures, which are very common in Opportunis-
tic Grid Computing. Also, using checkpointing, the BSP
parallel applications can use a larger, or smaller number of
processors, expanding or shrinking dynamically, adapting to
the Grid resource availability.

In this paper, we discuss the implementation of the BSP
model on top of the InteGrade grid middleware, using its dis-
tributed scheduling and allocation services. The structure
of the paper is as follows. Section 2 discusses support for

personal or classroom use is granted without fee provided that copies areparallel applications in other grid platforms and Section 3

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

describes the major concepts behind BSP and BSPlib. Sec-
tion 4 presents a brief description of the InteGrade system
and architecture. Section 5 focuses on our implementation

MGC'05, November 28- December 2, 2005 Grenoble, France Copyright of the BSP model. We present our conclusions in Section 6.

2005 ACM 1-59593-269-0/05/11$5.00.

2. RELATED WORK

Supporting parallel applications on heterogeneous envi-
ronments, such as grid systems, is not trivial. Many issues
have to be addressed, such as communication overhead, fault
tolerance, parallel computing support, legacy compatibility,
checkpointing, job migration and synchronization, and so
forth.

Some grid systems already provide support for parallel ap-
plications. Grid systems such as Legion (www.cs.virginia.
edu/~legion) and Condor (www.cs.wisc.edu/condor) sup-
port the MPI and PVM parallel programming models.

Legion supports MPI and PVM parallel applications via
emulation libraries that use Legion’s run-time library. Ex-
isting applications only need to be recompiled and re-linked
to run on Legion. Therefore, issues such as checkpointing
and job migration are treated by emulation libraries.

Condor provides a framework for running PVM applica-
tions in its environment, the Condor-PVM. It does not de-
fine a new API, instead programs use the existing resource
management PVM calls. Regular PVM and Condor-PVM
are binary compatible. The same binary, which runs un-
der regular PVM, also runs under Condor, and vice-versa.
There is no need for re-linking for Condor-PVM, thus, ap-
plication development is easier.

Condor supports MPI through MPICH. A problem is that
machines running MPI jobs must be dedicated [25], which
means that once they begin the execution of a program,
they will continue executing the program until the program
ends, which is a problem for environments where dedicated
resources are not available.

Globus (http://www.globus.org), a toolkit that provides
services for grid applications, supports MPI through MPICH-
G2, a customized MPI implementation for grid applications.

MPT applications can run under MPICH-G2 without changes.

MPICH-G2 uses services provided by the Globus Toolkit to
coordinate and manage work on multiple computer systems,
automatically convert data in messages sent between ma-
chines of different architectures, and support multi-protocol
communication. Recently, Globus also provided a BSP im-
plementation, BSP-G [23]. BSP-G uses the services pro-
vided by the Globus toolkit to implement authentication,
authorization, resource allocation and process control and
creation. Although the BSP model has the cleanest and sim-
plest programming model, among the systems above, only
for Globus there is an implementation.

Another interesting approach for doing parallel processing
on computational grids can be found in [1], where active
objects are used.

To the best of our knowledge, the work described in this
paper is the first implementation of BSP to run on an op-
portunistic grid system. Our BSP implementation is open-
source and it benefits from support for checkpointing and
security provided by our middleware.

3. THE BSP COMPUTING MODEL

The Bulk Synchronous Parallel model (BSP) [24] was in-
troduced by Leslie Valiant, as a bridging model, linking ar-
chitecture and software. BSP offers both a powerful abstrac-
tion for computer architects and compiler writers, and a con-
cise model of parallel program execution, enabling accurate
performance prediction for proactive application design.

A BSP abstract computer consists of a collection of virtual

processors, each with local memory, connected by an inter-
connection network whose only properties of interest are the
time to do a barrier synchronization and the rate at which
continuous randomly addressed data can be delivered. A
BSP computation consists of a sequence of parallel super-
steps, where each superstep is composed of computation and
communication, followed by a barrier of synchronization.

The BSP model is compatible with the conventional SPMD
/ MPMD (single/multiple program, multiple data) model,
and is at least as flexible as MPI, having both remote mem-
ory (DRMA) and message-passing (BSMP) capabilities. The
timing of communication operations, however, is different
since the effects of BSP communication operations do not
become effective until the next superstep.

The postponing of communications to the end of a super-
step is the key idea for implementations of the BSP model.
It removes the need to support non-barrier synchronizations
between processes and guarantees that processes within a su-
perstep are mutually independent. This makes BSP easier
to implement on different architectures and makes BSP pro-
grams easier to write and to analyze mathematically. For
example, since the timing of BSP communications makes
circular data dependencies between BSP processes impos-
sible, there is no risk of deadlocks or livelocks in a BSP
program. Also, the separation of the computation, commu-
nication, and synchronization phases allows one to compute
time bounds and predict performance using relatively simple
mathematical equations [19].

An advantage of BSP over other approaches to architecture-
independent programming, such as the message passing li-
braries PVM [21] or MPI [8], lies in the simplicity of its
interface, as there are only 20 basic functions (the most
relevant ones are enumerated on Section 5.1). A piece of
software written for an ordinary, sequential machine can be
transformed into a parallel application with the addition of
only a few instructions.

Another advantage is performance predictability. The
performance of a BSP computer is analyzed by assuming
that in one time unit an operation can be computed by a
processor on the data available in local memory and based
on the parameters below:

1. P — the number of processors;

2. w; — the time to compute the superstep s on processor
i

3. hj — the number of bytes sent or received by processor
1 on superstep s;

4. g — the ratio of communication throughput to proces-
sor throughput;

5. | — the time required to barrier synchronize all proces-
SOrs.

Some values for [and g can be found in [22], and in
order to find these values for other environments tools as
BSPEDUpack [3] can be used. To avoid congestion, for ev-
ery processor on each superstep, hj must be no greater than
iy,

gMoreover, there are plenty of algorithms developed for
CGM (Coarse Grained Multicomputer Model) [7], which has
the same principles of BSP and can be easily ported to BSP.

Several implementations of the BSP model have been de-
veloped since the initial proposal by Valiant. They provide
to the users full control over communication and synchro-
nization in their applications. Existing BSP implementa-
tions for local area networks include: Oxford’s BSPlib [13]
(1993), JBSP [12] (1999): a Java version, and PUB [4]
(1999).

3.1 BSP and Grid Computing

Although not yet common, the use of the BSP model for
Grid Computing on non dedicated resources fits very well
with two fundamental characteristics of such environments:
dynamism and heterogeneity. In both cases, the BSP model
brings optimization opportunities, which are not straight-
forward in other models such as MPI.

The available resources in a Grid change frequently. Using
the BSP model, it is possible to deal with this dynamism by
using checkpointing in the synchronization points, avoiding
the loss of computation when one or more machines being
used by a BSP parallel application becomes unavailable. It
is also possible to deal with resource availability fluctuations
by shrinking or expanding the BSP parallel application, in
the synchronization points [11]. This can be done, trans-
parently to the application, by placing more than one of the
BSP processes of an application in the same machine. That
is, a BSP application with n processes can be executed on ¥
to n machines, where the maximum value for k is determined
considering primarily memory limitations.

The BSP model also helps with regard to the heterogene-
ity of processing speeds among Grid nodes. In a hetero-
geneous environment, the time of a superstep is determined
by the slowest processor; thus, a processor allocation scheme
where the processes with larger computing times go to the
faster machines can be used. Finally, as the communica-
tions are done at the end of the supersteps, it is easier to
find communication patterns and exploit this information
to implement optimized Grid-aware scheduling in wide-area
networks [10].

4. INTEGRADE ARCHITECTURE

The InteGrade project is a multi-university effort to build
a novel Grid Computing middleware infrastructure to lever-
age the idle computing power of personal workstations. In-
teGrade will allow organizations to expand their effective
computing power without the necessity of buying additional
hardware. Desktop users that take part in InteGrade ex-
port the idle portion of their computing resources to the
Grid, which then uses these resources to execute applica-
tions submitted by Grid users.

InteGrade features an Object-Oriented architecture and
is built using the CORBA [18] industry standard for dis-
tributed objects. InteGrade also strives to ensure that users
who share the idle portions of their resources in the Grid
shall not perceive any loss in the quality of service provided
by their applications. To achieve this goal, the software
that runs on resource providing workstations use OiL [5], a
lightweight CORBA implementation. We are also working
towards using a user level scheduler (DSRT) [17] to provide
QoS guarantees for users of resource provider nodes.

The basic architectural unit of an InteGrade grid is the
cluster. A cluster contains a number of machines, which
typically varies from 1 to about 100. Clusters are natu-
rally mapped to LANs, although this is not required. Clus-

Cluster
Manager

o

Dedicated Node Resource Grid User Node
Provider Node

LRM -LUF'A -LRM -LLIPA -LRM
Hee ascT

Figure 1: InteGrade Intra-Cluster Architecture

ters are then organized into a hierarchy which can poten-
tially encompass millions of machines. This hierarchy can
be organized in any convenient fashion, as there is no pre-
determined model. This overall architecture was proposed
in the 2K Operating System [15] and was slightly modified
to suit InteGrade’s needs.

Figure 1 depicts the major components in an InteGrade
cluster. The Cluster Manager is composed of one or more
nodes that are responsible for managing that cluster and
communicating with managers in other clusters. A Grid
User Node is one belonging to a user who submits applica-
tions to the Grid. A Resource Provider Node, typically a PC
or a workstation in a shared laboratory, is one that exports
part of its resources, making them available to grid users. A
Dedicated Node is one reserved for grid computation. This
kind of node is shown to stress that, if desired, InteGrade
can also encompass dedicated resources. Note that these
categories may overlap: for example, a node can be a Grid
User Node and a Resource Provider Node at the same time.

The Local Resource Manager (LRM) and the Global Re-
source Manager (GRM) cooperatively handle intra-cluster
resource management. The LRM is executed in each cluster
node, collecting information about the node status, such as
memory, CPU, disk, and network utilization. LRMs send
this information periodically to the GRM, which uses it for
scheduling within the cluster. This process is called the In-
formation Update Protocol.

The GRM and LRMs also collaborate in the Resource
Reservation and Ezxecution Protocol, which works as follows.
When a grid user submits an application for execution, the
GRM selects candidate nodes for execution, based on re-
source availability and application requirements. For that
end the GRM uses its local information about the cluster
state as a hint for locating the best nodes to execute an
application. After that, the GRM engages in a direct nego-
tiation with the selected nodes to ensure that they actually
have the sufficient resources to execute the application at
that moment and, if possible, reserves the resources in the
target nodes. In case the resources are not available in a
certain node, the GRM selects another candidate node and
repeats the process. The GRM is also responsible for com-
munication with other clusters.

Similarly to the LRM/GRM cooperation, the Local Usage
Pattern Analyzer (LUPA) and the Global Usage Pattern
Analyzer (GUPA) handle intra-cluster usage pattern col-
lection and analysis. The Node Control Center (NCC),
which is still under construction, will allow the owners of

resource providing machines to set the conditions for re-
source sharing, if they so wish. Parameters such as periods
in which they do not want their resources to be shared, the
portion of resources that can be used by grid applications
(e.g., 30% of the CPU and 50% of its physical memory), or
definitions as to when to consider their machine idle will be
set using this tool. The Application Submission and Control
Tool (ASCT) allows InteGrade users to submit grid appli-
cations for execution by using a graphical interface. The
user can specify execution prerequisites, such as hardware
and software platforms, resource requirements such as mini-
mum memory requirements, and preferences, such as select-
ing the fastest CPUs available. The user can also use the
tool to monitor application progress.

In the next section, we show how the BSP programming
model was implemented on top of the presented architecture.

5. BSP OVER INTEGRADE

One of the objectives of the InteGrade BSP implementa-
tion is to allow existing applications written for the Oxford
BSPIlib to be executed over InteGrade with little or even no
modifications. Thus, we strictly adhere to the API defined
by the Oxford implementation targeted for the C language.
The task of converting an existing BSPlib application to
execute over InteGrade consists only of recompiling and re-
linking the application with the appropriate InteGrade li-
braries. This is a considerable advantage for programmers,
since they will be able to execute existing applications over
resources controlled by InteGrade without the cost of port-
ing the applications.

Another important design decision was not to overload
the core InteGrade interfaces with methods related to BSP.
As InteGrade is a system under continuous development, we
consider important to keep the core interfaces small, describ-
ing only the essential functionality. All BSP related meth-
ods, including the internals of our implementation, are kept
in a separate module with its own IDL interfaces. For ex-
ample, the scheduling system remains unchanged even with
the addition of parallel applications. It is the responsibility
of the BSP library to arrange for application startup, and it
does so by building over the existing scheduling system for
regular applications.

Our BSP implementation uses CORBA internally for inter-
task communication. CORBA gives us the advantages of an
easier and cleaner communication environment, shortening
development and maintenance time and facilitating system
evolution. The use of CORBA is transparent to the user
who only uses the traditional BSP interface.

Initially, we were worried that the use of CORBA for
data exchange could bring a significant performance penalty
when compared to an implementation based on raw sockets.
But, experimental results demonstrated that the overhead
imposed by CORBA was relatively small and the benefits in
flexibility and ease of development showed that the choice
of CORBA was correct. It is also important to note that
CORBA’s TIOP is about 10 times faster than SOAP, the
XML-based protocol widely used in Web Services.

Since the InteGrade project’s goal is to benefit from oth-
erwise wasted computing resources, at the moment we are
satisfied with the system’s performance. In the future, how-
ever, it would be possible to replace the use of CORBA
with lower level mechanisms such as raw sockets; in this
case, our experiments show that we could expect perfor-

mance improvements in the order of 15%.

5.1 The Implementation

As mentioned before, the Oxford BSPlib has two means
of inter-task communication. Direct Remote Memory Access
(DRMA), which allows a task to read from and write to the
remote address space of another task, and Bulk Synchronous
Message Passing (BSMP), that implements message passing
communication between tasks. We have currently imple-
mented the most important functions DRMA and BSMP,
the initialization routine (which is mandatory for all BSP
programs), the barrier synchronization, and some simple en-
quiry methods. The following functions were implemented:

e bsp_begin: initializes a BSP application;

e bsp_pushregister: declares that a given memory ad-
dress can be accessed by other tasks;

e bsp_popregister: removes the last registration of a
given memory area, i.e., makes a given memory area
unavailable for remote access;

e bsp_put: writes on the memory of another task;
e bsp_get: reads from the memory of another task;
e bsp_sync: the synchronization barrier;

e bsp_pid: returns the BSP process ID of the calling
task (local method);

e bsp_nprocs: returns the number of tasks of the parallel
application;

e bsp_send: sends a message to the queue of another
task;

e bsp_move: moves a message from the local task queue.

In our implementation, each of the component tasks of a
parallel application has an associated BspProzy. The Bsp-
Proxy is a CORBA servant responsible for receiving BSP
related communication for a given task. The proxy contains
methods corresponding to functions defined in the BSP API,
such as bsp_put, and also contains methods that are inter-
nal to our implementation. The creation of BspProxies is
entirely handled by the library and is totally transparent to
library users. The library also creates a StubPool, which
is responsible for the instantiation of client stubs to access
the proxies of other BSP tasks. As each of the tasks of a
given application may communicate with all other tasks, the
pool organization of these stubs allows us to save memory
by sharing only one copy of the OiL. ORB!. state.

BSP parallel applications need means to initialize the exe-
cution, spawn additional tasks, and manage synchronization
barriers. In our implementation, the BSP parallel applica-
tions need coordination to perform some initialization tasks,
such as attributing unique process identifiers to each of the
application tasks, and broadcasting the IORs to each of the
tasks to allow them to communicate directly among them-
selves. The synchronization barriers also requires central
coordination. We decided to build those functionalities di-
rectly into the library: one of the application tasks, called

'0iL, our CORBA ORB, is written in Lua [14] and is loaded
by the Lua runtime at application startup.

Process Zero, is responsible for performing the aforemen-
tioned tasks.

Parallel applications are registered in the same way as
sequential ones. To execute a registered parallel applica-
tion on the Grid, the user must use the ASCT graphical
interface to send a request to the GRM. This request is
identical to the one sent when executing a sequential ap-
plication. The ASCT silently adds a configuration filename,
bspExecution.conf, to the list of the application input files.
This filename is not used by the GRM, which simply for-
wards it to the LRMs which will host each of the parallel ap-
plication processes. bspExecution.conf contains the num-
ber of application nodes, the application ID as attributed by
the ASCT, and the IOR of the ASCT, which will be used to
determine which task will be Process Zero. When a request
reaches the LRM, it downloads the configuration file from
the ASCT.

The bsp_begin method determines the beginning of the
parallel section of a BSP application. Applications are ex-
ecuted in the following way: when the method bsp_begin
is reached, each launched task contacts the ASCT (with
the call registerBspNode); the first one to complete the
operation is elected Process Zero. All other tasks receive
Process Zero reference. After receiving the reference, each
task contacts Process Zero sending its IOR (with the call
registerRemotelor). When Process Zero receives all IORs,
it sends to each task its process identification (from 1 to the
number of tasks minus 1), and broadcasts all the received
IORs, to allow direct communication among tasks.

When bsp_begin is completed, each of the processes has
a BSP PID and the IORs of all other processes, which are
used to instantiate stubs for remote communication. The
communication between tasks are performed through Bsp-
Proxies and StubPools, as CORBA remote method invoca-
tions.

When the DRMA methods are used, before reading or
writing a remote memory position (with bsp_get or bsp_put),
it is necessary to register the position. The registration en-
sures that the physical memory addresses of a given variable,
which are different on each task, are mapped to a logical ad-
dress, which is the same across all tasks. This is done with
the methods bsp_pushregister and bsp_popregister. The
correspondence between the logical and physical addresses
are stored in a stack in each task.

For the BSMP methods, the messages are sent to other
processors using bsp_send. The sent messages are stored in a
queue on the destination processor, along with the message,
the origin, a tag, and the message size. These messages can
be retrieved on the subsequent superstep using bsp_move,
which copies and removes the first message from the local
queue. There is no warranty on the order which the messages
are retrieved.

As previously described in Section 3, computation in the
BSP model is composed of supersteps, and each of them
is finished with a synchronization barrier. Operations such
as bsp_put and bsp_pushregister only become effective at
the end of the superstep. bsp_synch is the method respon-
sible for establishing synchronization. In our implementa-
tion, it works as follows: when a task calls bsp_synch (in-
cluding Process Zero), it sends a synch message to Process
Zero and then stops executing. When Process Zero re-
ceives synch messages from all other processes, it broadcasts
a synch_done message to the other processes, which then

can process all pending operations, in the following order:
bsp_get; bsp_put; bsp_pushregister; bsp_popregister; and
bsp_move.

In its current state, our implementation of the BSP library
does not handle failures such as stall IORs. We do not
consider this as a limitation as the IORs used are created by
our own library. However, our group has an ongoing work
on how to handle node failures, and unavailability, using a
checkpointing library [6].

5.2 Experiments

To evaluate the performance of our library, we imple-
mented two simple applications. First, Multiple Matrix
multiplications, where the algorithm used is based on the
systolic approach [20]. Second, DNA sequence alignment,
where the amount of communication among tasks is small;
for a problem of size n, the computation is O(n?) and the
communication is O(n). We compared the performance of
the algorithms on a local network of heterogeneous PCs,
running the same algorithm written in MPI (using a highly-
optimized implementation: MPILAM 7.1.1 [16]) and in BSP
over InteGrade. For these experiments we used only dedi-
cated machines.

We carried out experiments for 1, 4, 9, and 16 computers.
In the matrix multiplication experiment, the BSP CORBA
implementation was surprisingly even faster than the MPI
one for 4 and 9 computers (e.g., to multiply matrices of size
1500 by 1500, BSP took 1015.2s while MPI took 1180.5s).
However, with 16 processors the MPI implementation was
always faster (e.g., it solved the problem in half of the time
of BSP for matrices of 600 size by 600). For the sequence
alignment program, we obtained similar results, with MPI
being a little faster than the BSP version. For this program,
however, the difference in performance was at most 11% (the
larger difference was for 10 computers with sequences of size
480,000 where BSP took 111.4s and MPI took 100.7s).

MPI performance was better in problems with smaller
granularity and presented more stable speed-up. In some
cases, the BSP results showed a tendency to loose perfor-
mance with the increase in the number of machines. This
shows that when one programs for this model it is important
to pay good attention to the balance between computation
and communication.

6. CONCLUSIONS

In this paper, we described the implementation of the
support for BSP applications in the InteGrade middleware
infrastructure for Grid Computing. Thanks to the object-
oriented architecture of InteGrade and its use of an elegant
and mature distributed object model (CORBA), the imple-
mentation of the extra functionality was relatively easy. We
also verified that even if performance was not one of our
main objectives it was possible to obtain some performance
results close to the MPI implementation. So, the overhead
added by the middleware and the CORBA communication
were not so relevant.

InteGrade is available for download as open-source soft-
ware from the following site: http://incubadora.fapesp.
br/projects/integrade. Documentation and more infor-
mation is available from the project main site (http://gsd.
ime.usp.br/integrade). We would like to encourage re-
searchers and software developers from other institutions
both to use InteGrade in new applications and environments

and to help extending the middleware, providing new func-
tionalities.

7.
(1]

[5]

[11]

[12]

[13]

[14]

REFERENCES

Laurent Baduel, Frangoise Baude, and Denis Caromel.
Object-Oriented SPMD. In Proceedings of Cluster
Computing and Grid, Cardiff, United Kingdom, May
2005.

Berkeley Open Infrastructure for Network Computing.
http://boinc.berkeley.edu/, 2004.

Rob H. Bisseling. Parallel Scientific Computation: A
Structured Approach using BSP and MPI. Oxford
University Press, Oxford, UK, March 2004.

Olaf Bonorden, Ben Juulink, Ingo von Otto, and Ingo
Rieping. The Paderborn University BSP (PUB)
Library—Design, Implementation and Performance. In
13th International Parallel Processing Symposium &
10th Symposium on Parallel and Distributed
Processing, 1999.

Renato Cerqueira and Renato Maia. Oil: An orb in
the lua language. Home page:
http://oil.luaforge.net, 2005.

Raphael Y. de Camargo, Andrei Goldchleger, Fabio
Kon, and Alfredo Goldman. Checkpointing-based
Rollback Recovery for Parallel Applications on the
InteGrade Grid Middleware. In ACM/IFIP/USENIX
2nd International Workshop on Middleware for Grid
Computing, Toronto, Canada, October 2004.

Frank Dehne. Coarse grained parallel algorithms.
Algorithmica Special Issue on “Coarse grained parallel
algorithms”, 24(3-4):173-176, 1999.

MPI Forum. MPI: A Message Passing Interface. In
Proceedings of Supercomputing’93, pages 878-883.
IEEE Computer Society Press, November 1993.
Andrei Goldchleger, Fabio Kon, Alfredo Goldman,
and Marcelo Finger. InteGrade: Object-Oriented Grid
Middleware Leveraging Idle Computing Power of
Desktop Machines. Concurrency and Computation:
Practice and Experience, 16:449-459, March 2004.
Alfredo Goldman. Scalable algorithms for complete
exchange on multi-cluster networks. In Proceedings of
the 2rd IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGrid 2002),
pages 286-287, 2002.

Alfredo Goldman, Fabio Kon, Pierre-Frangois Dutot,
and Marco Netto. Scheduling moldable bsp tasks. In
Proceedings of the 11th Workshop on Job Scheduling
Strategies for Parallel Processing, LNCS, Cambridge,
June 2005.

Yan Gu, Bu-Sung Lee, and Wentong Cai. JBSP: A
BSP Programming Library in Java. Journal of Parallel
and Distributed Computing, 61(8):1126-1142, 2001.
Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu,
Mark W. Goudreau, Kevin Lang, Satish B. Rao,
Torsten Suel, Thanasis Tsantilas, and Rob H.
Bisseling. BSPlib: The BSP programming library.
Parallel Computing, 24(14):1947-1980, 1998.

Roberto lerusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes Filho. Lua - an extensible
extension language. Software: Practice € Ezxperience,
26:635-652, 1996.

(15]

24]

(25]

Fabio Kon, Roy H. Campbell, M. Dennis Mickunas,
Klara Nahrstedt, and Francisco J. Ballesteros. 2K: A
Distributed Operating System for Dynamic
Heterogeneous Environments. In Proceedings of the
9th IEEE International Symposium on High
Performance Distributed Computing (HPDC’9), pages
201-208, Pittsburgh, August 2000.

LAM/MPL. http://www.lam-mpi.org, 2004.

Klara Nahrstedt, Hao hua Chu, and Srinivas Narayan.
QoS-aware Resource Management for Distributed
Multimedia Applications. Journal of High-Speed
Networking, Special Issue on Multimedia Networking,
7:227-255, 1998.

Object Management Group. CORBA v3.0
Specification, July 2002. OMG Document 02-06-33.
David B. Skillicorn, Jonathan M. D. Hill, and W. F.
McColl. Questions and answers about BSP. Journal of
Scientific Programming, 6:249-274, 1997.

Siang W. Song. Systolic algorithms: concepts,
synthesis and evolution. Technical report, CIMPA
School of Parallel Computing, Temuco, Chile, 1994.
Vaidy S. Sunderam. PVM: a framework for parallel
distributed computing. Concurrency, Practice and
Experience, 2(4):315-340, 1990.

The Oxford BSP Toolset.
www.bsp-worldwide.org/implmnts/oxtool/, 2004.
Weiqin Tong, Jingbo Ding, and Lizhi Cai. Design and
Implementation of a Grid-Enabled BSP. In
Proceedings of the 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid 2008), 2003.

Leslie G. Valiant. A bridging model for parallel
computation. Communications of the ACM,
33:103-111, 1990.

Derek Wright. Cheap cycles from the desktop to the
dedicated cluster: combining opportunistic and
dedicated scheduling with Condor. In Proceedings of
the Linux Clusters: The HPC Revolution conference,
Champaign - Urbana, IL, June 2001.

